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A B S T R A C T   

Background: Longitudinal studies reported that some elderly people with normal cognition (NC) converted to 
mild cognitive impairment (MCI), and some remained normal state (NC_S). The underlying factor for this dif-
ference conversion of NC is worthy of exploration 
Methods: Eighty-three NC participants were tracked for eight years. Thirty participants transitioned from NC to 
MCI (NC_MCI). The remaining 53 participants retained an NC_S. The structural brain features and genetic 
expression of the 83 NC participants were obtained. We applied weighted gene co-expression network analysis 
(WGCNA) to inquire into the co-expression network of those. Mediator effect analysis of regulatory roles was 
conducted to inquire into the associations between brain measures, expression values, and clinical scores. 
Results: The main results are: 1) 20 brain features and 740 gene expression had significant differences between 
the two groups, 2) one module including 187 genes had the most correlation with cortical thickness of left su-
perior temporal sulcus (L.STS), 3) NFKBIA and RARA genes were the top two genes that made the greatest 
contribution to L.STS thickness, and 4) mediating effect was found between the L.STS thickness, the NFKBIA and 
RARA expression levels, and clinical scores. 
Conclusion: Our results provide a theoretical foundation based on gene expression and brain imaging for the 
factors of NC with different outcomes.   

1. Introduction 

Mild cognitive impairment (MCI) is a transition state between 
normal cognition and Alzheimer’s disease (AD) (Morris, Storandt, 
Miller, Mckeel, Price, Rubin, and Berg, 2001; Stephan, Hunter, Harris, 
Llewellyn, Siervo, Matthews, and Brayne, 2012). MCI entails more 
cognitive and memory decline than normal ageing (Levey, Lah, Gold-
stein, Steenland, and Bliwise, 2006). Longitudinal studies found that 
some elderly people with normal cognition (NC) maintained an NC state, 
and some elderly people developed MCI during follow-up (Morris and 
Price, 2001). The reason for this difference in conversion from NC is 
worth exploring. According to the longitudinal follow-up labels of NC, 
we wanted to determine whether certain factors of this different con-
version of NC, such as imaging genetics characteristics, would be 
evident in individuals when they were in a normal cognitive state. Based 

on such a problem, we designed this study. 
Structural abnormalities of brain morphology, such as a decrease or 

increase in cortical thickness in particular brain regions, are an impor-
tant cause of MCI or AD (Filippi et al., 2020; Lerch, Pruessner, Zijdenbos, 
Hampel, Teipel, and Evans, 2005; Querbes et al., 2009). Aberrant 
cortical thickness is a potential marker to track neuropathological pre-
figuration of AD progression (Reiter, Nielson, Smith, Weiss, Alfini, and 
Smith, 2015). A previous study determined that the thickness of the 
temporal cortex of MCI patients decreased significantly compared to 
that of healthy elderly individuals (Vivek, Howard, Lerch, Evans, Dorr, 
and Jehan, 2006). Beyond this, genetic factors might play a vital role in 
the degeneration of AD. Complex genetic risk factors are believed to 
contribute to 70% of AD risk. A largest meta-analysis has reported 
approximately twenty genes to have relationship with the progression 
and pathogenesis of MCI or AD (Lambert et al., 2013). In genetics, gene 
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expression is the basic level at which genotype produce genotype. The 
genetic code stored in DNA is “translated” by gene expression, and the 
characteristics of gene expression produce the phenotype of an organ-
ism. However, it is unclear what aspects of genetic expression variation 
are associated with the abnormal cortical characteristics regarding MCI 
or AD. 

Weighted gene co-expression network analysis (WGCNA) is an un-
supervised method for clustering genes into co-expression modules 
(Langfelder and Horvath, 2008). This method can be applied to ascertain 
potential markers and has been employed in varieties of biological 
studies (Tao, Han, Yu, Wang, and Zhang, 2020). WGCNA was designed 
to divide thousands of genes into several modules and allow phenotypic 
and behavioral characteristics to be associated with tens of modules 
instead of thousands of individual variables. This method has been used 
widely in studies of various diseases, such as neurological and psychi-
atric disorders (Eugenia et al., 2018; Miller, Woltjer, Goodenbour, 
Horvath, and Geschwind, 2013; Wang et al., 2020). Recent studies have 
identified several hub genes which have relationship with AD or MCI 
using WGCNA (Hu, Yu, Zhou, Yin, Hu, Lu, and Hu, 2020; Zhu, Jia, Li, 
and Jia, 2020). Tang and Liu (2019) identified temporal characteristic 
networks in AD by WGCNA using expression data from peripheral blood. 
Otherwise, this method also offers an insight into a scientific co- 
expression network that may be closely related to the interesting 
phenotype. Thus, we employed WGCNA to research the associations 
among brain features, expression values, and clinical scores of NC with 
different conversion outcomes and preliminarily inquired into the fac-
tors affecting transformation of NC. 

In this work, the hypothesis is that there is an association between 
structural brain characteristics and gene expression in patients with 
outcome label from normal cognition to mild cognitive impairment. 83 
participants with NC who were enrolled in an 8-year longitudinally 
follow-up study were included. During the eight-year period, 30 par-
ticipants transitioned from normal cognition to MCI (NC_MCI). The 
other 53 participants remained in a state of NC (NC_S). Differentially 
expressed genes and morphological characteristic of the cerebral cortex 
were identified. We employed WGCNA and identified the pivotal mod-
ules and genes which have relationship with NC_MCI. Then, we per-
formed correlation and mediator effect analysis to inquire into deeper 
and subtler results. 

2. Materials and methods 

2.1. Sample dataset 

The sample data is from the ADNI database (Alzheimer’s Disease 
Neuroimaging Initiative database; adni.loni.usc.edu). We followed up 
92 participants with NC for approximately eight years. We found that 57 
participants maintained a state of NC (NC_S), and 35 participants con-
verted from NC to mild cognitive impairment (NC_MCI) after reviewing 
the latest visit records. After quality control, 9 subjects (4 in the NC_S 
group and 5 in the NC_MCI group) were removed. 

Detailed information of ADNI, quality control and the timeline of the 
30 conversions from NC to MCI are in Supplementary materials and 
Supplementary Table S1. Further information about inclusion and 
exclusion criteria used across the ADNI study can be found in the pro-
cedure manual (https://adni.loni.usc.edu/wp-content/uploads/2008/ 
07/adni2-proceduresmanual.pdf). 

2.2. Ethics approval statement 

We confirm that all procedures performed in this study involving 
human participants were in accordance with the ethical standards of the 
ADNI consortium Ethics Committee and with the 1964 Helsinki decla-
ration and its later amendments or comparable ethical standards. 
Informed consent Process was accomplished by ADNI database (adni. 
loni.usc.edu). 

2.3. sMRI data processing 

We employed FreeSurfer to conduct the full processing stream for 
structural MRI data (https://surfer.nmr.mgh.harvard.edu/) to process 
T1-weighted MRI images (Fischl et al., 2004; Fischl, Salat, Busa, Albert, 
and Dale, 2002). We firstly transfered the format of MRI image from 
DICOM to NIFTI. Using the BET, a brain extracting tool, we extracted 
brain from all T1 images (Smith, 2002). Then, we segmented grey 
matter, white matter and cerebrospinal fluid from brain images (Wilson, 
2002) (Andersson et al., 2007). Thirdly, we registered the grey matter 
images to the standard template of ICBM152 and smoothed these images 
with an 8 mm Gaussian kernel using SPM8 (Statistical Parametric 
Mapping, https://www.fil.ion.ucl.ac.uk/spm). Finally, grey matter was 
divided into 148 regions (74 brain regions in each hemisphere) using 
aseg atlas information of FreeSurfer (Fischl, Sereno, And, and Dale, 
1999). The detailed steps are in the Supplementary materials. We 
extracted 7 kinds of brain measures from each region. In the statistical 
analysis, we used a two-sample T test to obtain the differences of 7*148 
features using the conversion time (the mean conversion time is 27.2 
months) as a covariate. 

2.4. Genetic expression data processing 

15,481 gene expression (from peripheral venous blood) data corre-
sponding to the 83 participants is also provided on the ADNI database. 
Differentially expressed genes (DEGs) were gained between groups 
applying a R (version 3.6.3) software package limma. DEGs and regions 
with difference measures were used to next analysis. 

2.5. WGCNA analysis 

We employed the WGCNA method in R software to explore the 
relationship between 1,036 (7*148) brain structural features and 15,481 
gene expression levels. This is an approach that selects highly co- 
expression gene modules form DEGs and constructs associations be-
tween modules and phenotypes. DEGs were clustered into different 
modules. Then, the relationship of modules and cortical areas were 
established. Modules were visualized by using R package. Finally, we 
extracted genes from the most correlation module, which were used for 
the next analysis. 

2.6. Enrichment analysis 

WEB-based Gene Set Analysis Toolkit (https://www.webgestalt.org/ 
) (Liao, Wang, Jaehnig, Shi, and Zhang, 2019) is a powerful tool for gene 
function annotation. Gene ontology (GO) terms analysis of 740 DEGs 
from the comparison between NC_S and NC_MCI and 187 genes from the 
most correlated module were carried out using this online tool. The 
parameters for the enrichment analysis are: enrichment method: ORA 
(over-representation enrichment analysis); organism: hsapiens; enrich-
ment categories: geneontology_Biological_Process; ID type: gene sym-
bol; reference list: all mapped entrez gene IDs from the selected platform 
affy_hc_g110; the reference list can be mapped to 1881 entrez gene IDs 
and 1335 IDs are annotated to the selected functional categories that are 
used as the reference for the enrichment analysis; FDR method: 
Benjamini-Hochberg correction (BH); significance Level: Top 10, p <
0.01. 

2.7. Correlation analysis 

Based on the enrichment analysis results, we extracted the expres-
sion values of genes from the top 10 GO biological processes or KEGG 
pathways that have relationships with the progression of MCI or AD. We 
also extracted the brain measures and clinical scores of the NC_MCI 
groups and performed correlation analysis on these values using IBM 
SPSS Statistics 22. 
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2.8. Mediator effect analysis 

From the results of the correlation analysis, we performed mediating 
effect analysis using SPSSAU (version 20.0; https://spssau.com/). The 
mediator pathway that had an effect was defined as X=>M=>Y, where 
X is the independent variable (gene expression), Y is the dependent 
variable (clinical scores), and M is the mediating variable (brain mea-
sures). Z, a regulating variable, regulated the mediator effects on ways of 
X=>M or/and M =>Y. 

3. Results 

3.1. Demographic results 

Age and sex matching in NC_S and NC_MCI groups. Several clinical 
scores and cortical thickness of the left superior temporal sulcus (L.STS) 
have remarkable differences (p < 0.01, FDR correction, Table 1). The 
violin plots of between-group difference are shown in Fig. 4 (F-K). 

3.2. Differential brain measures and genes 

We extracted seven kinds of measures in each brain region. There-
fore, we obtained 1036 features of each participant, of which 20 features 
have remarkable differences (p < 0.01, FDR correction), such as the 
cortical thickness of L.STS. Most of the measures, shown in Supple-
mentary materials: Fig.S1 and Supplementary Table S2, are significant 
increase in NC_MCI group compared with NC_S group. 740 differential 
genes were obtained between the NC_S and NC_MCI groups (log2FC =
1.5, adjusted p < 0.05, Benjamini-Hochberg correction) (Supplementary 
Table S3). 

3.3. WGCNA and enrichment analysis results 

To ensure a scale-free network, a power β = 4 was selected as the 
soft-thresholding (Supplementary materials: Fig. S2). A total of 5 mod-
ules (Fig. 1(A)) were identified through hierarchical clustering. Fig. 1(B) 
shows the heatmap of all genes. Fig. 1(C) and (D) show the eigengene 
adjacency heatmap and dendrogram of five modules. Fig. 2 shows the 
module-trait relationships. We observed that the blue the ‘blue’ module 
(contained 187 genes) had the most correlation with L.STS thickness (r 
= 0.37, p = 5*10-4). 

As for the enrichment analysis, 740 differential genes were mainly 
enriched in protein kinase C signaling, anoikis, pigment metabolic 
process and neural precursor. 

cell proliferation (Supplementary materials: Fig. S3). 187 input 
genes in ‘blue’ module are unambiguously mapped to 182 unique entrez 
gene IDs and 5 user IDs could not be mapped to any entrez gene ID. The 
GO enrichment analysis is based upon the 182 unique entrez gene IDs. 
These genes were mainly enriched in the NIK/NF-kappa B signaling, 
interleukin-13 and − 4 production, membrane lipid metabolic process, 
and regulation of peptide secretion (Fig. 3). We extracted the top 10 
genes of the enrichment analyses results for the next correlation 
analysis. 

3.4. Correlation analysis results 

Correlation analysis with the purpose of finding the correlation be-
tween brain characteristics and gene expression, exploring which gene 
contributing the most to the cortex thickness of L.STS. We obtained two 
genes those have significant correlation with L.STS thickness: 4792 
(nuclear factor kappa-B inhibitor alpha [NFKBIA]: r = 0.411, p <
0.00001) and 5914 (retinoic acid receptor alpha [RARA]: r = 0.36, p <
0.00001). The two genetic expression values had no significant corre-
lation with clinical scores. However, cortex thickness of L.STS had a 
remarkable correlation with ADNI_MEM and CDR scores. The details are 
shown in Fig. 4 (A-E). 

3.5. Regulatory mediator effects 

Based on the results of the correlation analysis, both the expression 
values of the NFKBIA and RARA genes and clinical scores were signifi-
cantly correlated with L.STS thickness. This motivated us to explore 
whether there is a mediating effect of L.STS thickness between the 
expression of the two genes and clinical scores. In this study, we applied 
ADNI_MEM as the dependent variable in regulatory mediator effects 
analysis. We found that L.STS cortex thickness assuredly serves as a 
complete mediator between the ADNI_MEM scores and genetic expres-
sion levels. The mediator pathway that had an effect was defined as 
X=>M=>Y, where X is the independent variable (RARA gene expres-
sion), Y is the dependent variable (clinical ADNI_MEM scores), M is the 
mediating variable (cortical thickness of left superior temporal sulcus (L. 
STS)), and Z is a regulating variable (high, average or low expression 
levels of NFKBIA gene) which regulated the mediator effects on ways of 
X =>M and M => Y pathways (Fig. 5A). Correspondingly, when X is the 
independent variable (NFKBIA gene expression), Y is the dependent 
variable (clinical ADNI_MEM scores), M is the mediating variable 
(cortical thickness of L.STS), and Z is a regulating variable (high, 
average or low expression levels of RARA gene) which regulated the 
mediator effects on ways of M => Y pathways (Fig. 5B). Details are in 
Supplementary Table S4. 

4. Discussion 

The main results of this study are: 1) 20 brain features and 740 gene 
expression had significant differences between the two groups, 2) one 
module including 187 genes had the most correlation with cortical 
thickness of left superior temporal sulcus (L.STS), 3) NFKBIA and RARA 
were the top two genes that made the greatest contribution to L.STS 
thickness, and 4) mediating effect were found between the L.STS 
thickness, the NFKBIA and RARA expression levels, and clinical scores. 
Taken together, the factors influencing the conversion of MCI in elderly 
people have relationship with the thickness of L.STS and expression of 
NFKBIA and RARA genes. 

Previous studies have suggested that changes in cortical thickness 
and grey matter volume are powerful biomarkers for AD progression 
(Dickerson and Wolk, 2012; Holbrook et al., 2020). Accurate measure-
ment of cortical thickness or grey matter volume across multiple regions 
may provide signatures of the disease specific enough to be helpful to the 
early diagnosis of AD (McEvoy et al., 2009). In this study, 20 signifi-
cantly different characteristics (80%) mainly focused on cortex 

Table 1 
Demographic information.   

NC   

NC_S (n = 53) NC_MCI (n = 30) p values 

Sex (M/F) 53 (21/32) 30 (16/14)  0.227 
Age 75.45 ± 5.96 77.57 ± 6.24  0.131 
Right/Left handed 53 (48/5) 30 (26/4)  0.669 
L.STS thickness 0.48 ± 0.08 0.54 ± 0.07  0.0023** 
PHS 0.4587 ± 0.1784 0.5995 ± 0.2241  0.149 
ADNI-MEM 1.2 ± 0.34 0.78 ± 0.26  0.0036** 
ADNI-EF 0.93 ± 0.14 0.82 ± 0.16  0.491 
ADNI-LAN 0.86 ± 0.21 0.84 ± 0.19  0.844 
ADNI-VS 0.23 ± 0.08 0.17 ± 0.09  0.246 
ADAS-TOTAL13 8.25 ± 1.96 10.96 ± 2.51  0.009** 
CDR 0.09 ± 0.019 0.167 ± 0.024  0.001** 
MMSE 29.09 ± 1.06 28.63 ± 1.847  0.217 

Data are presented as the mean ± sd; p values were obtained from two-sample T- 
tests and 5000 bootstrapping tests (**: p < 0.01, FDR correction). NC: normal 
cognition; NC_S: maintained a state of NC; NC_MCI: converted from NC to mild 
cognitive impairment in longitudinal tracking; L.STS: left superior temporal 
sulcus; PHS: polygenic hazard score; The remaining abbreviations are in Sup-
plementary materials. 
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Fig. 1. WGCNA results. (A) cluster dendrogram of all genes; (B) network heatmap of all genes; (C) adjacency heatmap of five modules; (D) eigengene dendrogram of 
five modules. 

Fig. 2. Gene expression modules and brain traits relationship (p < 0.01, FDR correction). L.STS: left superior temporal sulcus. The remaining abbreviations are 
in Supplementary Table S2. 
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thickness and volume, such as the thickness and grey matter volume of 
several temporal and frontal lobes. This result is consistent with previ-
ous findings reporting remarkable changes in cortical thickness occur-
ring in the temporal and frontal areas of MCI patients compared with 
normal controls (Im, Lee, Seo, Kim, Kim, and Na, 2008; Im et al., 2008; 
Sánchez-Benavides et al., 2010; Seo et al., 2007). These differences in 
cortical thickness of the temporal and frontal lobes may be one factor 
that potentially affect the degeneration from NC to MCI. In terms of gene 
expression, 740 genes were observed between the NC_S and NC_MCI 
groups. Berchtold et al., (2014) performed a microarray analysis and 
revealed extensive gene expression differences in a large proportion of 
brain regions in MCI patients relative to age-matched controls. Our 
result is consistent with this study. The 740 genes are mainly enriched in 
response to stimuli, multi-organism processes, developmental processes, 
and pigmentation. Majority of GO processes are associated with the 
pathogenesis of MCI. We chose a few genes involved in these GO bio-
logical processes to illustrate this relation. Calcium homeostasis modu-
lator 1 (CALHM1) encodes a calcium channel that plays a role in 
formation of precursor protein of amyloid-β. Post-mortem studies have 
showed that amyloid-β abnormalities is a pivotal factor that lead to 
synaptic damage and cognitive decline in AD (Reddy, Manczak, Mao, 
Calkins, and Shirendeb, 2010). A polymorphism at CALHM1 gene locus 

has been reported to be related to susceptibility to late-onset AD (Nac-
mias et al., 2010). Neuronal calcium sensor 1 (NCS1) is a high-affinity 
calcium-binding protein that has been involved in the adjustment of 
calcium channels in dopaminergic signaling and axonal regeneration, 
synaptic plasticity mechanisms, learning and memory behaviors (Ban-
dura and Feng, 2019). A previous study revealed that synapse loss 
potentially contributes the cognitive declines in ageing and AD, and the 
extensive declines in synaptic gene expression in normal ageing have 
suggested that the synaptic function might be hurt (Berchtold, Coleman, 
Cribbs, Rogers, Gillen, and Cotman, 2013). 

WGCNA showed that 187 gene expression values had significant 
correlation with cortical thickness of L.STS. Enrichment analysis of 187 
genes was mainly involved in the positive regulation of inflammatory 
responses, cellular responses to lipids, ageing, dopaminergic synapse 
activity, phagocytosis, regulation of cell activation, apoptotic cell 
clearance, cellular responses to lipopolysaccharides, biological oxida-
tion, and the positive regulation of responses to external stimuli. Karch 
and Goate (2015) demonstrated that neuroinflammation and dysregu-
lation of the immune response are central features of AD. Xu et al., 
(2020) explored the relationships between AD risk loci and lipid protein 
modules using WGCNA and found that lipid modules were correlated 
with AD risk loci implicated in the lipid metabolism and immune 

Fig. 3. Enrichment analysis esults of 187 differentially expressed genes. Bar chart of biological process categories (A), cellular component categories (B), 
molecular function categories (C), GO directed acyclic graph (D), and top 10 GO enrichment analysis result (E). 
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Fig. 4. The between-group differences and Pearson correlation of clinical scores, genetic expression values, and the thickness of L.STS. NFKBIA (A) and 
RARA (B) gene expression values and ADNI_MEM (C) and CDR (D) scores have remarkable correlations with the cortex thickness of L.STS;(E) is the difference region 
of L.STS. Between-group difference violin plots of thickness of L.STS (F), NFKBIA gene expression (G), RARA gene expression (H), ADNI_MEM score (I), CDR score (J), 
and ADAS-TOTAL13 score (K). L.STS: left superior temporal sulcus; NFKBIA: nuclear factor kappa-B inhibitor alpha; RARA: retinoic acid receptor alpha. 
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response. Hayes et al., (2002) explored the pathologic relationships 
among tau, amyloid β protein and microglial cell activity in AD and 
found that the microglial cell activation was prominently correlated 
with tau load. A previous study suggested that cortical sulcal 
morphology has a relationship with cognitive performance in elderly 
individuals (Liu et al., 2011). Our result suggested that the abnormal 
expression of 187 genes may influence the changes in L.STS cortical 
thickness and then promote the conversion from NC to MCI. There have 
been few previous studies on ITS cortical thickness. Therefore, we 
explored its adjacent structures. The STS links the middle temporal 
gyrus (MTG) and superior temporal gyrus (STG). STS deformation may 
reflect morphologic variations in the STG and MTG. Singh et al., (2006) 
found the most significant thickness difference within the MTG and STG 
in both the NC-MCI and MCI-AD comparisons. Scheff et al., (2011) 
observed synaptic loss in the ITG in MCI patients. These results indi-
rectly supported the thickness changes in STS. To further explore the 
relationship between genetic expression and L.STS cortical thickness, we 
obtained the gene expression values from the top 10 GO biological 
processes or KEGG pathways that have relationships with the progres-
sion of MCI or AD. We found that the NFKBIA and RARA genes have the 
greatest contribution to L.STS cortical thickness based on correlation 
analysis. 

NFKBIA encodes an alpha member of the NF-kappa-B (NF-κB) in-
hibitor family, Neuronal degeneration in the AD brains has relationship 
with NF-κB activation (Granic, Dolga, Nijholt, van Dijk, and Eisel, 2009). 
Activated NF-κB can be detected in glial cells that neighbor Aβ plaque 
areas, and excessive activation of it could leads to an increase in 
proinflammatory cytokines (Chen, Zhang, Shi, Ai, Qi, and Hang, 2009; 
Zhang, Yu, Hui, Wu, Yin, Yang, and Xu, 2014). The RARA gene, repre-
senting nuclear retinoic acid receptor alpha, has been implicated in the 
regulation of development, apoptosis, differentiation, granulopoiesis, 
and transcription of clock genes. Wang et al. (2015) reported that RARA 
is a key gene of miRNA-138 that can modulate itself to facilitate tau 
hyperphosphorylation in AD models. The significant positive correlation 
between expression values of the NFKBIA and RARA and L.STS cortical 
thickness means that the higher the expression of the two genes, the 
greater the L.STS cortical thickness. The correlation analysis between L. 
STS cortical thickness and clinical scores showed that the greater the 
cortical thickness was, the worse the clinical manifestation was, indi-
cated by measures such as higher CDR scores and lower memory scores. 

Reiter et al., (2015) reported that cortical thickness is a helpful 
biomarker to mark neuropathological symptoms of AD and that cortical 
change is a potential biomarker of AD degeneration. In the early stages 
of the disease, even in normal cognitive stages, gene expression and 
cortical thickness are quietly changing, further promoting the conver-
sion from NC to MCI. Our results also implied that neither gene over- 
expression nor cortical areas that were too thick were good phenom-
ena. However, the effect of gene expression on cortical thickness in the 
AD brains has rarely been studied. In the future, this effect may be a 
good topic. 

In the correlation analysis between L.STS cortical thickness, clinical 
scores and expression values of the NFKBIA and RARA genes, we found 
that the thickness of L.STS was not only significantly correlated with the 
expression values of the NFKBIA and RARA genes but was also signifi-
cantly correlated with the clinical measurements of ADNI_MEM scores. 
It suggested that L.STS thickness is closely related to expression of the 
NFKBIA and RARA genes and ADNI_MEM scores. Then, is L.STS thick-
ness a link between genetic expression and ADNI_MEM scores and is this 
mediating effect regulated by the other gene? Our results showed that L. 
STS thickness has a complete mediating effect between ADNI_MEM 
scores and genetic expression; this finding implies that the effect of 
genetic expression on ADNI_MEM scores is mediated by L.STS thickness, 
although there is no direct effect of genetic expression on ADNI_MEM 
scores. Combining the results of the analysis of the mediating effect of 
regulatory roles, the different expression levels of RARA or NFKBIA 
prominently regulate the mediating effect pathway in which each gene 
was involved. As for the pathway of NFKBIA => L.STS thickness 
=>ADNI_MEM. When RARA gene expression was at an average or high 
level, the L.STS cortical thickness had effect on ADNI_MEM scores, 
suggesting that RARA gene expression regulated the mediating effect. In 
the pathway of RARA => L.STS thickness => ADNI_MEM, NFKBIA gene 
expression level had no regulatory mediating effect on the RARA => L. 
STS thickness sub-path. Also, when NFKBIA gene expression was at a 
low or average level, the mediation effect was non-existent; moreover, 
when NFKBIA gene expression was at a high level, the L.STS thickness 
had effect on ADNI_MEM scores, suggesting that NFKBIA gene expres-
sion regulates the sub-path of L.STS thickness =>ADNI_MEM. 

A few concerns should be noticed. Firstly, we observed that cortical 
thickness of the L.STS is an intermedium between NFKBIA and RARA 
genetic expression and clinical scores in the conversion from NC to MCI 
in this study; however, further investigate need be held on specific 
regulatory mechanism. Secondly, which is the best method for co- 
expression module detection in WGCNA: still need for further verifica-
tion. Thirdly, there are many factors that influence MCI or AD except 
genes and brain structure, such as physical or mental illness, and 
nutrition; We will examine the effects of these combined factors in the 
future. Finally, the sample size is also a concern. 

5. Conclusion 

We used WGCNA to study the association between gene expression 
and brain imaging features in NC participants with different conversion 
outcomes and observed that L.STS cortical thickness and NFKBIA and 
RARA genetic expression are associated with conversion from NC to 
MCI. 
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